sic itur ad astra

some of us are looking towards the stars

47 notes &

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. The first SLS mission — Exploration Mission 1 — will launch an uncrewed Orion spacecraft to a stable orbit beyond the moon and bring it back to Earth to demonstrate the integrated system performance of the SLS rocket and Orion spacecraft’s re-entry and landing prior to a crewed flight.

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. The first SLS mission — Exploration Mission 1 — will launch an uncrewed Orion spacecraft to a stable orbit beyond the moon and bring it back to Earth to demonstrate the integrated system performance of the SLS rocket and Orion spacecraft’s re-entry and landing prior to a crewed flight.

Filed under sls orion concept artist impression em-1 space launch system nasa space launch

24 notes &

NASA has completed a complex series of tests on one of the largest composite cryogenic fuel tanks ever manufactured, bringing the aerospace industry much closer to designing, building, and flying lightweight, composite tanks on rockets. At NASA’s Marshall Space Flight Center in Huntsville, Alabama, the tank was lowered into a structural test stand where it was tested with cryogenic hydrogen and structural loads to simulate stresses the tank would experience during launch. The project is part of NASA’s Space Technology Mission Directorate, which is innovating, developing, testing and flying hardware for use in NASA’s future missions.
Cryogenic propellants are gasses chilled to subfreezing temperatures and condensed to form highly combustible liquids, providing high-energy propulsion solutions critical to future, long-term human exploration missions beyond low-Earth orbit. In the past, propellant tanks have been fabricated out of metals. Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight.

NASA has completed a complex series of tests on one of the largest composite cryogenic fuel tanks ever manufactured, bringing the aerospace industry much closer to designing, building, and flying lightweight, composite tanks on rockets. At NASA’s Marshall Space Flight Center in Huntsville, Alabama, the tank was lowered into a structural test stand where it was tested with cryogenic hydrogen and structural loads to simulate stresses the tank would experience during launch. The project is part of NASA’s Space Technology Mission Directorate, which is innovating, developing, testing and flying hardware for use in NASA’s future missions.

Cryogenic propellants are gasses chilled to subfreezing temperatures and condensed to form highly combustible liquids, providing high-energy propulsion solutions critical to future, long-term human exploration missions beyond low-Earth orbit. In the past, propellant tanks have been fabricated out of metals. Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight.

Filed under nasa space Marshall Space Flight Center test cryogenic cryotank orion

47 notes &

CAPE CANAVERAL, FLA. — The Original Seven Mercury Astronauts pose beside an Air Force F-102 jet. Standing, left to right, are M. Scott Carpenter, L. Gordon Cooper, John H. Glenn Jr., Virgil I. “Gus” Grissom, Walter M. Schirra Jr., Alan B. Shepherd Jr., and Donald K. “Deke” Slayton.

CAPE CANAVERAL, FLA. — The Original Seven Mercury Astronauts pose beside an Air Force F-102 jet. Standing, left to right, are M. Scott Carpenter, L. Gordon Cooper, John H. Glenn Jr., Virgil I. “Gus” Grissom, Walter M. Schirra Jr., Alan B. Shepherd Jr., and Donald K. “Deke” Slayton.

Filed under mercury nasa space mercury 7

166 notes &

NASA’s Voyager 2 spacecraft gave humanity its first glimpse of Neptune and its moon Triton in the summer of 1989. This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on the Voyager 2 narrow angle camera. The images were taken on Aug. 20, 1989, at a range of 4.4 million miles from the planet, 4 days and 20 hours before closest approach on Aug. 25. The picture shows the Great Dark Spot and its companion bright smudge; on the west limb the fast moving bright feature called “Scooter” and the little dark spot are visible. These clouds were seen to persist for as long as Voyager’s cameras could resolve them. North of these, a bright cloud band similar to the south polar streak may be seen.
In the summer of 2015, another NASA mission to the farthest zone of the solar system, New Horizons, will make a historic first close-up study of Pluto. Although a fast flyby, New Horizons’ Pluto encounter on July 14, 2015, will not be a replay of Voyager but more of a sequel and a reboot, with a new and more technologically advanced spacecraft and, more importantly, a new cast of characters. Those characters are Pluto and its family of five known moons, all of which will be seen up close for the first time next summer.

NASA’s Voyager 2 spacecraft gave humanity its first glimpse of Neptune and its moon Triton in the summer of 1989. This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on the Voyager 2 narrow angle camera. The images were taken on Aug. 20, 1989, at a range of 4.4 million miles from the planet, 4 days and 20 hours before closest approach on Aug. 25. The picture shows the Great Dark Spot and its companion bright smudge; on the west limb the fast moving bright feature called “Scooter” and the little dark spot are visible. These clouds were seen to persist for as long as Voyager’s cameras could resolve them. North of these, a bright cloud band similar to the south polar streak may be seen.

In the summer of 2015, another NASA mission to the farthest zone of the solar system, New Horizons, will make a historic first close-up study of Pluto. Although a fast flyby, New Horizons’ Pluto encounter on July 14, 2015, will not be a replay of Voyager but more of a sequel and a reboot, with a new and more technologically advanced spacecraft and, more importantly, a new cast of characters. Those characters are Pluto and its family of five known moons, all of which will be seen up close for the first time next summer.

Filed under neptune planet probe voyager 2 new horizons

211 notes &

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians dressed in clean-room suits have installed a back shell tile panel onto the Orion crew module and are checking the fit next to the middle back shell tile panel. Preparations are underway for Exploration Flight Test-1, or EFT-1.
Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth’s surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system.

Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians dressed in clean-room suits have installed a back shell tile panel onto the Orion crew module and are checking the fit next to the middle back shell tile panel. Preparations are underway for Exploration Flight Test-1, or EFT-1.

Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth’s surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system.

Filed under orion nasa test construction clean room kennedy ocb

30 notes &

Maxim celebrated World Space Week at the beginning of October with an infographic celebrating some fun, impressive, and bizarre facts about space and space exploration.  Maxim provided the facts, and we went to town with a fun page of illustrations including Leonardo DiCaprio in a space suit and cats and dogs getting sucked into a black hole.  Check out our initial concept sketch below.

Maxim celebrated World Space Week at the beginning of October with an infographic celebrating some fun, impressive, and bizarre facts about space and space exploration.  Maxim provided the facts, and we went to town with a fun page of illustrations including Leonardo DiCaprio in a space suit and cats and dogs getting sucked into a black hole.  Check out our initial concept sketch below.

Filed under inforgraphic space nasa iss comedy fun

31 notes &

The pale rocks in the foreground of this fisheye image from NASA’s Curiosity Mars rover include the “Bonanza King” target under consideration to become the fourth rock drilled by the Mars Science Laboratory mission.  No previous mission has collected sample material from the interior of rocks on Mars. Curiosity delivers the drilled rock powder into analytical laboratory instruments inside the rover.
Curiosity’s front Hazard Avoidance Camera (Hazcam), which has a very wide-angle lens, recorded this view on Aug. 14, 2014, during the 719th Martian day, or sol, of the rover’s work on Mars.  The view faces southward, looking down a ramp at the northeastern end of sandy-floored “Hidden Valley.” Wheel tracks show where Curiosity drove into the valley, and back out again, earlier in August 2014.  The largest of the individual flat rocks in the foreground are a few inches (several centimeters) across.  For scale, the rover’s left front wheel, visible at left, is 20 inches (0.5 meter) in diameter.

The pale rocks in the foreground of this fisheye image from NASA’s Curiosity Mars rover include the “Bonanza King” target under consideration to become the fourth rock drilled by the Mars Science Laboratory mission.  No previous mission has collected sample material from the interior of rocks on Mars. Curiosity delivers the drilled rock powder into analytical laboratory instruments inside the rover.

Curiosity’s front Hazard Avoidance Camera (Hazcam), which has a very wide-angle lens, recorded this view on Aug. 14, 2014, during the 719th Martian day, or sol, of the rover’s work on Mars.  The view faces southward, looking down a ramp at the northeastern end of sandy-floored “Hidden Valley.” Wheel tracks show where Curiosity drove into the valley, and back out again, earlier in August 2014.  The largest of the individual flat rocks in the foreground are a few inches (several centimeters) across.  For scale, the rover’s left front wheel, visible at left, is 20 inches (0.5 meter) in diameter.

Filed under mars nasa probe curiosity space hazvam Bonanza King msl